Solarthermie

Keine Energiewende ohne Solarwärme
In letzter Zeit kann man es immer häufiger hören und lesen: Ohne Solarwärme ist die Energiewende nicht zu schaffen! Die Freude über diese Aussage verfliegt aber wieder, wenn gleich danach die Solarthermie-Anlagen klassischen Zuschnitts für Einfamilienhäuser schlechtgeredet werden. Die einen behaupten, eine Photovoltaikanlage mit Wärmepumpe und kleinem Brauchwasserspeicher sei die billigste Lösung, andere stellen die These auf, ohne Langzeitspeicher gäbe es im Eigenheim keine Solarthermie, die auch ökonomisch Sinn stiftet. Ja was denn nun?

solarthermie_am_abend

Solarthermie ist: am Sommerabend ein durchgeladener Solarspeicher für wenigstens 48 Stunden voll-solare Wärmeversorgung

Optimale Wirtschaftlichkeit der „Faktor 2-Anlage“

Jede Sonnenkollektoranlage, die mit einer brennstoffgespeisten Wärmequelle im Haus gekoppelt ist, leistet einen Beitrag zur Langzeitspeicherung, indem eben dieser Brennstoff gespart wird. Einfache Trinkwasser-Solaranlagen schaffen im Jahresschnitt immerhin rund 15% Einsparung. Das liegt aber tatsächlich weit unter dem Potential einer Sonnenkollektoranlage. Bei einer „Faktor-2-Anlage“, also Verdoppelung der Kollektorfläche gegenüber der einfachen Auslegung für die Trinkwasser­erwärmung, lassen sich pro Quadratmeter Kollektorfläche immer noch genauso viel Kilowattstunden Solarwärme herausholen wie bei den kleinen Anlagen. Das meiste davon fließt innerhalb weniger Stunden oder Tage in den Verbrauch für Trinkwassererwärmung und Heizung. Dafür ist im Einfamilienhaus ein Pufferspeicher in der genannten Dimensionierung zwischen 750 und 1.500 Liter Volumen erforderlich, mehr nicht. Auf dieser Basis ist im Hochsommer eine komfortable Volldeckung des Wärmebedarfs möglich, und dem Kessel bleibt viel energie- und materialverschleißender Teillastbetrieb erspart. Solche Anlagen kommen je nach Dämmstandard des Hauses auf 25 bis 50% solare Brennstoffeinsparung. Das ist nicht wenig. Und weil die Investkosten vorrangig in gut genutzte Kollektorfläche und effiziente Anlagentechnik fließen, ist es auch wirtschaftlich. Die im April 2015 deutlich verbesserte Förderung im Marktanreizprogramm von BAFA und KfW sollte vielen Projekten über die Schwelle der Wirtschaftlichkeit helfen.

 

Solarthermie ist: ein robustes, langlebiges und gleichzeitig effizientes Anlagenkonzept

Langzeitspeicherung mit gespartem Brennstoff

Nicht verbrauchter Brennstoff, ob Öl, Gas oder Holzpellets, ist nichts anderes als die wirtschaftlichste Form der Langzeitspeicherung von Energie. Im Gegensatz zu einem Wärmespeicher oder einer Batterie ist die Energiedichte enorm und es gibt praktisch keine Speicherverluste. Auf diese Weise genutzt schafft die Solarthermie eine wichtige Voraussetzung, dass regenerativ gewonnene Brennstoffe – vor allem aus Wäldern und Power-To-Gas-Anlagen – mengenmäßig ausreichen könnten: für die Erzeugung von Strom während der „dunklen Flaute“, für den Verkehrsbereich, für die vielen kleinen brennstoffgespeisten Wärmeerzeuger, die es weiterhin in Einfamilienhäusern geben wird.

energiespeicher

Solarthermie ist: mit der Sonne so viel Brennstoff sparen, dass es für den Winter reicht

Solarthermie ist effiziente Anlagentechnik

Dieses Prinzip muss man natürlich konsequent weiterdenken. Viele Häuser haben einfach kein einigermaßen nach Süden orientiertes Dach, und die meisten Mehrfamilienhäuser nicht einmal für die solare Trinkwassererwärmung genügend Dachfläche. Hier können aus Photovoltaikstrom gespeiste Wärmepumpen oder Elektro-Direktheizungen die Rolle des Kollektorkreises übernehmen und Wärme in eine Anlagenschaltung liefern, die weitgehend von der klassischen Solarthermie übernommen ist. Dadurch ist eine optimale Nutzung des thermischen Pufferspeichers gewährleistet, wobei hier die Stichworte Exergieoptimierung und Trinkwasserhygiene zu nennen sind.

Energiewende im Dreieck von Strom und Wärme und Brennstoff

Es ist höchste Zeit, Stromtarife anzubieten, die stromnetzweit einen Anreiz schaffen, Erzeugungsspitzen von Ökostrom (und vorrangig nur diese!) in eine thermische Nutzung abzuleiten. Wenn Norddeutschland den Gasverbrauch drosselt, indem es Windstrom in Power-to-Heat und Power-to-Gas umsetzt, müssen keine Stromleitungen in den Süden gebaut werden. Wenn in Süddeutschland die Solarthermie den Gasverbrauch reduziert, kann viel Gas in großen Kavernen zwischengespeichert werden. Über das Gasnetz steht dann ausreichend Energie zur Verfügung, um bei Bedarf Lastspitzen abzudecken. Dafür braucht es keinen Neubau von Gaskraftwerken, sondern Kraft-Wärme-Kopplungsanlagen, die auf diese Weise ein optimaler Systempartner der Solarthermie werden.

Fazit: Keine Energiewende ohne Solarwärme ist absolut korrekt. Aber dazu müssen wir alle ihre vielfältigen Einsatzmöglichkeiten nutzen und bei der Energiewende nicht nur Strom und Wärme, sondern auch die Brennstoffe aus erneuerbaren Quellen konsequent einbeziehen.

 

Großflächenkollektoren

Ich finde Großflächenkollektoren klasse!

Natürlich haben auch besonders leistungsstarke Vakuumröhren-Kollektoren oder besonders kostengünstige Kollektoren im Standardformat ihre Berechtigung.

Aber großformatige Flachkollektoren haben eben ihre spezifischen Vorteile:

  • optimales Verhältnis von aktiver Kollektorfläche (Apertur) und Platzbedarf;
  • große Auswahl verfügbarer Formate für bestens an die Architektur angepasste Solarflächen;
  • projektbezogene Fertigung ermöglicht eine optimierte Positionierung der Kollektoranschlussleitungen;
  • Zusammenschluss großer Kollektorflächen in einem hydraulischen Strang;
2 x VARIOcollect A 6x2 im seriellen Zusammenschluss
2 x VARIOcollect A 6×2 im seriellen Zusammenschluss

Indach-Großflächenkollektoren sind sehr gut dafür geeignet, in die Dachfläche integriert zu werden. Wenn die Kollektorkonstruktion stimmig ist, genügt eine Mindestdachneigung von 15 °. (Eine Notdachebene muss natürlich trotzdem darunter.)

Indach_20120820

Auch für Schrägschnitte und die Kombination mit dachintegrierten PV-Flächen eignet sich die Großflächen-Technik bestens.

PV-ST Kombination

Leistungsstarke Großflächenkollektoren erreichen laut Blatt 2 ihres Solar Keymark Berichts einen Ertrag von über 450 kWh bei 50 °C am Standort Würzburg. Damit ist in der Innovationsförderung des BAFA eine ertragsabhängige Förderung von über 200 € pro Quadratmeter Bruttofläche erreichbar – auch bei Neubauten!

Weitere Fotobeispiele? Siehe Beitrag Referenzanlagen

Noch Fragen? Ich helfe gerne weiter.

Netzdienliche Solarthermie

Im Rahmen des Fachgesprächs Praxistest Heizung hielt ich am 30. Juni 2016 im Münchner Bauzentrum ein Referat zum Thema
Heizsystem im MFH: Fernwärme und große Solaranlage

Der einfache Grundgedanke des Referats ist: wenn für eine niedrige Rücklauftemperatur zur Fernwärme ohnehin eine effziente Anlagentechnik mit optimal geschichtetem Speicher erforderlich ist, dann rechnen sich im Hinblick auf den relativ hohen Wärmepreis der Fernwärme sehr schnell die überschaubaren Mehrkosten für Kollektor, Solarkreis und ggf. etwas mehr Puffervolumen.

Sonnenkollektoren werden am besten verbrauchernah eingesetzt. Während der Heizperiode liefert die Anlagentechnik der Solarthermie eine niedrige Rücklauftemperatur, im Sommer lässt sich mit Solarwärme erreichen, dass die Anschlussleitungen zu den mit 100% Deckungsrate solar versorgten Verbrauchern komplett auskühlen können, was die Netzverluste deutlich vermindert.

Für die Datei im PDF-Format bitte hier klicken:

Referat_2016-06

 

Solarthermie in der Sektorkopplung

Am 20. Juni 2016 veröffentlichte Prof. Dr.-Ing. habil. Volker Quaschning im Auftrag von Greenpeace die Studie Sektorkopplung durch die Energiewende – Anforderungen an den Ausbau erneuerbarer Energien zum Erreichen der Pariser Klimaschutzziele unter Berücksichtigung der Sektorkopplung.

Darin wird prognostiziert, dass im Interesse des Klimaschutzes Ökostrom aus Sonne und Wind auch für die Energieverbrauchssektoren Wärme und Verkehr zu nutzen sei, was als Sektorenkopplung bezeichnet wird. Als Fallbeispiel für den Sektor Wärme dient ein energetisch saniertes Einfamilienhaus mit einem jährlichen Energiebedarf (Wärme) von 15.000 kWh. Diese Wärme kann über die Kette Gasbrennwertkessel (ca. 100% Nutzungsgrad) und Power-to-Gas (65% Wirkungsgrad) ohne fossiles Erdgas aus 23.000 kWh Ökostrom bereitgestellt werden.

Altbau ohne Solar
Studie Sektorkopplung, Ausschnitt aus Bild 9

Demgegenüber bilanziert die Stude die Wärmeversorgung über eine Elektrowärmepumpe auf 5.000 kWh Ökostrom:

WP JAZ3
Studie Sektorkopplung, Ausschnitt aus Bild 9

Ein Verhältnis von 1 zu 4,6 erscheint überzeugend. Dabei vernachlässigt die Studie jedoch, dass auch der naturgemäß auf den Hochwinter fallende Stromverbrauch der Elektro-Wärmepumpe zu einem großen Teil über die Energiespeicherung per Power-to-Gas (65% Wirkungsgrad) und die anschließende Rückverstromung in Gaskraftwerken (50% Wirkungsgrad) laufen muss.

Für 5.000 kWh Heizstrom sind gut 15.000 kWh Ökostrom erforderlich!

Die Studie enthält einige wichtige Hinweise auf die Rolle der Solarthermie und letztlich diese Aussage:

Wird die Solarthermie stärker ausgebaut als in dieser Studie unterstellt wurde, lässt sich der zusätzliche Strombedarf weiter reduzieren. (Seite 15)

Das zeigt sich auch am Beispiel des Einfamilienhauses. Gekoppelt mit einer Solarthermieanlage, die 35% des Wärmebedarfs abdeckt – das leisten klassische solare Kombianlagen für Warmwasserbereitung und Heizungsunterstützung – reduziert sich der Gasverbrauch auf 9.750 kWh. Diese Menge lässt sich ebenso aus 15.000 kWh Ökostrom erzeugen, wie der Heizstrom für Elektrowärmepumpen.

Fazit: Solarthermie mit P2G-Brennwertheizung und Elektrowärmepumpe mit JAZ 3 sind gleichwertige Alternativen. Im Interesse des Klimaschutzes sollte Solarthermie dort den Vorrang haben, wo günstige Voraussetzungen gegeben sind (unverschattetes Dach mit guter Südorientierung), so dass es realistisch möglich wird, ausreichende Stromerzeugungskapazitäten für den Heizstromverbrauch der Elektrowärmepumpen im Winter aufzubauen.

Die Studie im Original: http://pvspeicher.htw-berlin.de/wp-content/uploads/2016/05/HTW-2016-Sektorkopplungsstudie.pdf

Repowering für Sonnenkollektoranlagen

Repowering

ist vor allem aus der Windenergiebranche bekannt und bezeichnet die Erneuerung von Energieerzeugungsanlagen am selben Standort. „Durch die rasante Entwicklung der Technologie (…) ist es in vielen Fällen rentabel, schon vor Ablauf der technischen Lebensdauer alte, kleine Anlagen durch neue, größere zu ersetzen.“ (aus: Wikipedia)

Was für die Erzeugung von Ökostrom richtig ist, kann auch guter Ansatz für Sonnenkollektoranlagen sein, die in die Jahre gekommen sind. „Repowering für Sonnenkollektoranlagen“ weiterlesen

Solaraktivhaus-Nachweis mit GetSolar rechnen

Bei Ein- und Zweifamilienhäusern, die neu gebaut werden oder deren Gebäudehülle ambitioniert saniert wird, kann eine Solarthermieanlage zur Warmwasserbereitung und Raumheizung eine Gesamtdeckungsrate von über 50% erreichen.

Unter der Voraussetzung, dass diese Mindestdeckungsrate erreicht ist, und die Kollektorfläche über 20 m² liegt,  kann beim BAFA die äußerst attraktive Innovationsförderung beantragt werden. „Solaraktivhaus-Nachweis mit GetSolar rechnen“ weiterlesen

PV mit Wärmepumpe oder Solarthermie?

Löst Photovoltaik gekoppelt mit Wärmepumpentechnik die klassische Sonnenkollektortechnik ab?

Betrachtungen auf Basis des Energieverbrauchs eines energiewendetauglichen Einfamilienhauses führen zu diesem Ergebnis:

PV_WP_ST

Mit rund 12 m² Solarthermie-Anteil in der Solarfläche und Heizung ohne elektrische Wärmepumpe verbessert sich die Strombilanz eines Einfamilienhauses unter Energiewendeaspekten dramatisch.

Vor allem erreicht der Verzicht auf die Wärmepumpe, dass sich der Stromverbrauch in den Wintermonaten (gegenüber dem normalen Haushaltsstrombezug ohne PV-Anlage) nicht verdoppelt, sondern bereits im Februar ein bilanzieller Überschuss aus der PV-Anlage an das Stromnetz geliefert werden kann.

Das ist hinsichtlich der Energiewende ein wichtiger Beitrag zum Stromverbrauch der Industrie. Dieser liegt in Deutschland bei jährlich 3.000 kWh pro Kopf der Bevölkerung.

Fazit: Es ist besser, eine Photovoltaikfläche mit einem Sonnenkollektor zu kombinieren als mit einer Wärmepumpe.

Die Faktenanalyse, die zu dieser Aussage führt, findet sich in dieser ausführlichen Präsentation:

DownloadDownload

 

20 m² Solarthermie und 6,1 kWp PV-Fläche dachintegriert

Exergieoptimierte Frischwarmwassertechnik

Frischwarmwasserstationen, also Trinkwassererwärmer mit Plattenwärmetauscher, die als Durchlauferhitzer mit Heizwasser funktionieren, können inzwischen als Stand der Technik angesehen werden. Frischwarmwassertechnik bietet viele Vorteile:

  • Gradgenaue Erwärmung des Trinkwassers, weitestgehend unabhängig von der aktuellen Speichertemperatur;
  • weniger Verkalkung, da zwischen Kollektorkreis und Trinkwasser der mit Heizwasser gefüllte Pufferspeicher zwischengeschaltet ist;
  • hervorragende Warmwasserhygiene (Schutz vor Legionellen) auch bei großzügig dimensioniertem Speicher;
  • niedrigste Heizwassertemperaturen im Rücklauf für schichtende Speicherentladung und demzufolge optimale Gasbrennwert- bzw. Solarwärmenutzung;

 

Bei Anlagen in Einfamilienhäusern ermöglicht die Regelung des Frischwassersystems auch einen sehr energiesparenden Betrieb der Zirkulationspumpe.

Den Anforderungen des DVGW folgend muss in Mehrfamilienhäusern die Zirkulation wenigstens 16 Stunden pro Tag eine Rücklauftemperatur von 55 °C haben. In vielen Anlagen wird die Zirkulation einfach auf die Kaltwasserzuleitung geschaltet. Dort kommt es zu einer Temperaturvermischung, die zwangsläufig auch die Rücklauftemperatur aus der Frischwarmwasserstation ansteigen lässt. Wenn bei solchen Objekten Sonnenkollektoren installiert sind, bleibt der Ertrag häufig deutlich hinter den Erwartungen zurück.

Temperaturmischung von Kaltwasser und Zirkulation

Die Auftrennung der Trinkwassererwärmung in einen Vorwärmteil mit niedrigen Rücklauftemperaturen und einen von der Zirkulation betroffenen Bereitschaftsteil ist aus Gründen der Trinkwasserhygiene nicht zu empfehlen.

Exergieoptimierte Frischwasserkaskade

Bei der exergieoptimierten Kaskade sind die Frischwasserstationen parallel zueinander geschaltet. In der Kaltwasserleitung zwischen dem ersten und dem weiteren Modul befindet sich ein Trennventil, das bei geringer Zapfung das Kaltwasser nicht zum zweiten durchlässt. Die Zirkulationsleitung wird von der anderen Seite an das zweite Gerät herangeführt. So bleibt das erste Modul getrennt von der hohen Temperatur des Zirkulationsrücklaufs und liefert immer eine niedrige Rücklauftemperatur. Der Rücklauf des kaltwasserseitigen Moduls kann also immer in die kälteste Schicht des Pufferspeichers eingeleitet werden, die Einleitung der Rücklaufleitung des zirkulationsseitigen Moduls erfolgt getrennt davon in wärmere Speicherschichten.

Exergieoptimierte Kaskade

Hohe Zapfraten werden vom Regelmodul des kaltwasserseitigen Gerätes erkannt. Durch Öffnen des Trennventils gelangt Kaltwasser zum zirkulationsseitigen Modul und nutzt dessen Leistungskapazität. Mit äußerst geringem Schaltungsaufwand lassen sich auf diese Weise sehr leistungsstarke Trinkwassererwärmersysteme aufbauen.

Schlüsseltechnik für Energieeffizienz und Solarthermie

Die durch die exergieoptimierte Schaltung der Frischwarmwasserkaskade im Speicher tatsächlich entstehende kalte Zone liefert die Basis für den Betrieb von Sonnenkollektoren im optimalen Wirkungsgradbereich. Ebenso interessant ist die Lösung aber auch für Anlagen in Fernwärmenetzen, für die in den Technischen Anschlussbedingungen eine niedrige Rücklauftemperatur gefordert ist.